s

abstracta =

ASSESSING YOUR CONTINUOUS
TESTING CAPABILITIES:

TESTING IN A CONTINUOUS OUR MATURITY MODEL
DELIVERY WORLD

Improve speed without rushing @ KEY AREAS IN CONTINUOUS

software out the door. TESTING

- Risk Assessment.
Testing needs to “shift left™ - Defect Casual Analysis.
Testing is starting to be done by - Code Quality Control.
developers more frequently. - Traceability.
QA professionals are still doing manual - Test Optimization.
work, but they're trying to automate the - Service Virtualization.
process as well.
Challenge for Testers: not just to be a KEY BENEFITS
good tester but also be able to engineer - Focus on the areas that matter
the process and take advantage of - Determine current gaps in maturity

advanced automation practices. - Control risks, quality and costs

THE THREE PILLARS OF TESTING MATURITY

PEOPLE
YOUR TEAM
|:staff training and awareness
OUR TEAM
/ \ specialised technical QA staff
/ \
TECHNOLOGY @ ----- PROCESSES

Y
TESTING MATURITY ASSESSMENT

Abstracta's testing maturity assessment will help you quickly identify
where your QA stands today and what activities you need to do to achieve
the goal of testing maturity, enhancing your technology and processes.

to control risks,
quality and costs.

LEVELS (risk, quality, costs)
e quality

g"’g BASIC EFFICIENT CONTINUOUS

o 0 —©
| TOOLS &

METHODOLOGIES

Eal

7
w
=
=
3
<

© Abstracta 2016
abstracta [] www.abstracta.us | hello@abstracta.us

BASIC TESTING

AWARE OF RISKS
MEASURED QUALITY
MEASURED COSTS

EFFICIENT TESTING

CONTROLLED RISKS
CONTROLLED QUALITY
CONTROLLED COSTS

CONTINUOUS TESTING

REDUCED RISKS
OPTIMIZED QUALITY
OPTIMIZED COSTS

r

SOURCE
CODE

ENVIRONMENT /
INFRASTRUCTURE

INCIDENTS /
BUGS

TEST
MANAGEMENT

FUNCTIONAL
TESTS

AUTOMATED
TESTS

PERFORMANCE
TESTS

SECURITY
TESTS

USABILITY
TESTS

Source code
versioning

- Separted testing/dev environments
- Few devices/browsers are covered

Bug tracking

- Basic test management

- Test planning with
development

- Functionality inventory (backlog)
- Traceability between TCs and
features
- TCs, checklists, ET sessions

- Unit testing
- APl automated tests

- Client-side performance tests
- System performance testing
(before go-live)
- Reactive monitoring in production

Basic testing of access
control policies
Usability
testing

Code quality control

- Test data management
- Full devices/browsers coverage
- Virtual servers

(Defects Causal Analysis)

- Testing before
development
- Impact analysis

- Test design
techniques
- Tests are prioritized

. - Ul automation
- Unit testing with minimal coverage

- Unit performance tests (during
development)
- Proactive monitoring in production

- OWASP top 10
- Pentesting

User
testing

CONTINUOUS INTEGRATION /

CONTINUOUS DELIVERY

- Test environment management
- Containers
- Service virtualization
Traceablllty between
features, issues and code
- Agile management

- Testing and development
as one unified team

Long-term code
coverage strategy

Unit, APl and Ul automated

tests running continuously

Performance tests running
continuously

Automated
security checks

Accessibility
testing

abstracta =

© Abstracta 2016

www.abstracta.us | hello@abstracta.us

@D MANDATORY
() RECOMMENDED
(D OPTIONAL

(BASIC TESTING 1 (EFFICIENT TESTING 1 ﬁ:ONTINUOUS TESTING\

.

£

B

83

N\

QD

]

SOURCE
CODE

ENVIRONMENT /
INFRASTRUCTURE

INCIDENTS /
BUGS

TEST
MANAGEMENT

FUNCTIONAL
TESTS

AUTOMATED
TESTS

PERFORMANCE
TESTS

SECURITY
TESTS

USABILITY
TESTS

- Pieces of source code get lost.
- Not clear what version each client has, which

makes it complicated to do fixes in the
corresponding code.

- Not clear what is in each environment,

everyone works in shared environments.

- Not sure if we are testing with the latest

version.

- Bad communication between development

and testing.

- No knowledge of the state of each incident.
- No knowledge of the version in which an

incident was fixed.

- No test cycles defined.
- Testing is hard, not business focused, starts

late, and takes too long to update a test case.

- No knowledge of which incidents each test

case corresponds to.

- Not clear what needs to be tested or when.

- No record of what has to be tested or with

which level of priority.

- No evidence of test executions.
- No information on the quality status of each

version.

- Incidents already solved reappear.
- Getting feedback after introducing a new

change takes too long.

- Automated tests take a long time to run.
- Automated tests are expensive in terms of

maintenance.

- Uncertainty when going live, lack of

knowledge about how the system will
perform.

- No control over production systems or other

environments.

- No clear methodology to carry out tests that

simulate the expected load.

- Security breaches, uncontrolled risks or

uncertainty concerning how unprotected
the users are.

- Users find the system difficult to use.
- No evidence that the application is usable.

- The code has a big technical debt,

maintainability problems, poor internal
quality, lack of documentation, dead or
duplicated code, doesn't follow best
practices in design or architecture, complex
code (spaghetti), etc.

- Data is overwritten between developers,

testers or automated tests.

- There are devices that have problems.
- Cannot test on all devices.

- No knowledge of how to avoid incidents.
- No knowledge of where the incidents come

from.

- Testing starts after development, focused on

detecting and reporting, not prevention.

- When something changes, no knowledge of

which test cases need to be executed.

- Uncertain about how well the tests are

designed.

- Not clear what to test first.

- Testers are bored and demotivated, always

executing the same tests.

- Regression tests are executed manually and

take a long time.

- Testers make mistakes when doing

checkups.

- Performance problems are difficult to solve

and are detected very late.

- Unable to anticipate problems that occur in

production.

- Security standards are not met.

- Users are resistant to change due their lack

of involvement in acceptance testing.

- No evidence that the application is

user-friendly.

- Finding bugs and solving issues takes too

long.

- Integration is complex and costly.

- Difficult to set up a new environment for a

demo, test or whatever is necessary.

- No knowledge of which feature is affected

by a certain bug and to what line of code it
relates to.

- No traceability within code versions.

- Gap between development and testing

team, not sharing goals.

- No knowledge of what coverage we should

have.

- Not enough time to meet the expected

coverage.

- Fear and uncertainty when releasing a new

feature to production.

- No knowledge of how a new change affects

performance.

- No knowledge of how a new change affects

security.

- Need to release frequent security patches.

- No evidence that the application is

accessible to all.

abstracta =

© Abstracta 2016
www.abstracta.us | hello@abstracta.us

3AT0S OL SNIvd

CASE STUDY

By using continuous delivery

practices, HP LaserJet Firmware
team could:

WHY CONTINUOUS DELIVERY?

- Reduce overall development costs by ~40%

- Increase programs under development by ~140%
- Reduce development costs per program by 78%
- Increase resources driving innovation by 5x

Source:
Thoughtworks - The Case for Continuous Delivery.

Contact us at or call us

© Abstracta 2016
abstracta . www.abstracta.us | hello@abstracta.us

