
TESTING IN A CONTINUOUS
DELIVERY WORLD
Improve speed without rushing
software out the door.

Testing needs to ¨shift left¨:
Testing is starting to be done by
developers more frequently.
QA professionals are still doing manual
work, but they’re trying to automate the
process as well.
Challenge for Testers: not just to be a
good tester but also be able to engineer
the process and take advantage of
advanced automation practices.

· Focus on the areas that matter
· Determine current gaps in maturity
· Control risks, quality and costs

KEY BENEFITS

· Risk Assessment.
· Defect Casual Analysis.
· Code Quality Control.
· Traceability.
· Test Optimization.
· Service Virtualization.

KEY AREAS IN CONTINUOUS
TESTING

abstracta www.abstracta.us | hello@abstracta.us

© Abstracta 2016

abstracta www.abstracta.us | hello@abstracta.us

© Abstracta 2016

CONTROLLED RISKS
CONTROLLED QUALITY

CONTROLLED COSTS

EFFICIENT TESTING
REDUCED RISKS

OPTIMIZED QUALITY
OPTIMIZED COSTS

CONTINUOUS TESTING
AWARE OF RISKS

MEASURED QUALITY
MEASURED COSTS

BASIC TESTING

· Separted testing/dev environments
· Few devices/browsers are covered

Source code
versioning

Bug tracking

· Basic test management
· Test planning with

development

· Functionality inventory (backlog)
· Traceability between TCs and

features
· TCs, checklists, ET sessions

· Unit testing
· API automated tests

· Client-side performance tests
· System performance testing

(before go-live)
· Reactive monitoring in production

Basic testing of access
control policies

Usability
testing

User
testing

Code quality control

· Test data management
· Full devices/browsers coverage

· Virtual servers

Defects Causal Analysis

· Testing before
development

· Impact analysis

· Test design
techniques

· Tests are prioritized

· UI automation
· Unit testing with minimal coverage

· Unit performance tests (during
development)

· Proactive monitoring in production

· OWASP top 10
· Pentesting

CONTINUOUS INTEGRATION /
CONTINUOUS DELIVERY

· Test environment management
· Containers

· Service virtualization

Traceability between
features, issues and code

· Agile management
· Testing and development

as one unified team

Long-term code
coverage strategy

Automated
security checks

Unit, API and UI automated
tests running continuously

Performance tests running
continuously

Accessibility
testing

SOURCE
CODE

ENVIRONMENT /
INFRASTRUCTURE

INCIDENTS /
BUGS

TEST
MANAGEMENT

FUNCTIONAL
TESTS

AUTOMATED
TESTS

PERFORMANCE
TESTS

USABILITY
TESTS

SECURITY
TESTS

MANDATORY

RECOMMENDED

OPTIONAL

abstracta www.abstracta.us | hello@abstracta.us

© Abstracta 2016

P
A

IN
S

 TO
 S

O
LV

E

CONTINUOUS TESTINGEFFICIENT TESTINGBASIC TESTING

SOURCE
CODE

ENVIRONMENT /
INFRASTRUCTURE

INCIDENTS /
BUGS

TEST
MANAGEMENT

FUNCTIONAL
TESTS

AUTOMATED
TESTS

PERFORMANCE
TESTS

USABILITY
TESTS

SECURITY
TESTS

∙ Pieces of source code get lost.
∙ Not clear what version each client has, which
makes it complicated to do fixes in the
corresponding code.

∙ The code has a big technical debt,
maintainability problems, poor internal
quality, lack of documentation, dead or
duplicated code, doesn't follow best
practices in design or architecture, complex
code (spaghetti), etc.

∙ Finding bugs and solving issues takes too
long.

∙ Integration is complex and costly.

∙ Not clear what is in each environment,
everyone works in shared environments.

∙ Not sure if we are testing with the latest
version.

∙ Data is overwritten between developers,
testers or automated tests.

∙ There are devices that have problems.
∙ Cannot test on all devices.

∙ Difficult to set up a new environment for a
demo, test or whatever is necessary.

∙ Users find the system difficult to use.
∙ No evidence that the application is usable.

∙ Users are resistant to change due their lack
of involvement in acceptance testing.

∙ No evidence that the application is
user-friendly.

∙ No evidence that the application is
accessible to all.

∙ Security breaches, uncontrolled risks or
uncertainty concerning how unprotected
the users are.

∙ Security standards are not met. ∙ No knowledge of how a new change affects
security.

∙ Need to release frequent security patches.

∙ Uncertainty when going live, lack of
knowledge about how the system will
perform.

∙ No control over production systems or other
environments.

∙ No clear methodology to carry out tests that
simulate the expected load.

∙ Performance problems are difficult to solve
and are detected very late.

∙ Unable to anticipate problems that occur in
production.

∙ No knowledge of how a new change affects
performance.

∙ Incidents already solved reappear.
∙ Getting feedback after introducing a new
change takes too long.

∙ Automated tests take a long time to run.
∙ Automated tests are expensive in terms of
maintenance.

∙ Testers are bored and demotivated, always
executing the same tests.

∙ Regression tests are executed manually and
take a long time.

∙ Testers make mistakes when doing
checkups.

∙ Fear and uncertainty when releasing a new
feature to production.

• Bad communication between development
and testing.

∙ No knowledge of the state of each incident.
∙ No knowledge of the version in which an
incident was fixed.

∙ No knowledge of how to avoid incidents.
∙ No knowledge of where the incidents come
from.

∙ No knowledge of which feature is affected
by a certain bug and to what line of code it
relates to.

∙ No traceability within code versions.

∙ No test cycles defined.
∙ Testing is hard, not business focused, starts
late, and takes too long to update a test case.

∙ No knowledge of which incidents each test
case corresponds to.

∙ Not clear what needs to be tested or when.

∙ Testing starts after development, focused on
detecting and reporting, not prevention.

∙ When something changes, no knowledge of
which test cases need to be executed.

∙ Gap between development and testing
team, not sharing goals.

∙ No record of what has to be tested or with
which level of priority.

∙ No evidence of test executions.
∙ No information on the quality status of each
version.

∙ Uncertain about how well the tests are
designed.

∙ Not clear what to test first.

∙ No knowledge of what coverage we should
have.

∙ Not enough time to meet the expected
coverage.

By using continuous delivery
practices, HP LaserJet Firmware
team could:

WHY CONTINUOUS DELIVERY?
CASE STUDY

· Reduce overall development costs by ~40%
· Increase programs under development by ~140%
· Reduce development costs per program by 78%
· Increase resources driving innovation by 5x

Source:
Thoughtworks - The Case for Continuous Delivery.

abstracta www.abstracta.us | hello@abstracta.us

© Abstracta 2016

