
THE ULTIMATE GUIDE TO
CONTINUOUS TESTING
Everything you need to know to shift-left testing and reach testing maturity

At Abstracta, we believe that Agile development, 
along with the practices that it promotes such as 
continuous integration, continuous testing and 
continuous delivery (CI/CT/CD), is the key to remai-
ning competitive in today’s technological landscape.

For an Agile environment to flourish in your organi-
zation, testing needs to happen earlier on in develo-
pment than it does in traditional development envi-
ronments like waterfall. We call this “shift-left 
testing” and it’s imperative for Agile teams to truly 
succeed.

There are several software quality assurance activi-
ties to focus on that will help you in your efforts to 
reach an efficient continuous integration environ-
ment, allowing for the quality checks you want to 
have in each build.

In this guide, we will tackle the various areas in 
which we can group these activities so you may 
have a clear picture of what your team must work 
on in order to make progress in your testing matu-
rity and, ultimately, reach continuous testing!

Introduction
The Source Code
Environments and Infrastructure
Bug and Incident Management
Test Management
Functional Testing
Test Automation
Performance Testing
Security Testing
Usability Testing
Levels of Testing Maturity
Conclusion

CONTINUOUS TESTING: TODAY’S GOLDEN STANDARD

TABLE OF CONTENTS ABOUT THE AUTHOR

Federico Toledo is a co-founder and 
director of Abstracta and holds a PhD in 
Computer Science from UCLM, Spain. 
With over 10 years of experience in quality 
engineering, he's helped many companies 
to successfully improve their application 
quality. He is dedicated to testing educa-
tion, having written one of the first books 
in Spanish on testing and formed Abstrac-
ta Academy. He is also a co-organizer of 
TestingUY, the biggest testing conference 
in Latin America.

Let’s Begin!

hello@abstracta.us © Abstracta.P2.1

https://www.linkedin.com/in/federicotoledo/
https://twitter.com/fltoledo
https://abstracta.us/


THE ULTIMATE GUIDE TO
CONTINUOUS TESTING

Many teams today are trying to build or refine their 
continuous testing machine. We believe that in order 
to improve the results of software production, it’s 
necessary to consider three fundamental pillars that 
are closely linked together: processes, tools and 
people. Teams can improve by bettering their proces-
ses, but the tools and the team members must also 
adapt in order for the new and improved processes 
to stick.

"Agility basically facilitates competitiveness. To 
compete in today's environment, you must act and 
react fast, otherwise your competition will simply 
beat you to it. Today, the barrier to compete is mini-
mal, and the only way to defend one's stature is by 
innovating in short iterations and basically mea-
ning adopting Agile."

— Alon Girmonsky, CEO, BlazeMeter

When you shift testing left, among many other bene-
fits, you can achieve continuous testing, executing 
automated checks as part of the software delivery 
pipeline to obtain immediate feedback on the 
business risks associated with a software release 
candidate. Continuous testing also involves early and 
frequent testing, proper code management, and 
adjusting the various quality-related tasks over time 
to maximize the efficiency of the whole process.

INTRODUCTION

INTRODUCTION

For example, within Agile, teams may find themselves in frameworks like Scrum that create a process, for which 
they will find themselves using various types of tools for everything from communication to task management 
and there will typically be great focus on the motivation and commitment of the team.

All aspects of Agile approaches are well designed to be adaptable to change, which is its main focus. The idea is 
to assume that what the customer needs is not fixed nor established in a contract. Thus, it is essential to work on 
constant adaptations in a way that does not cause the project costs to skyrocket or become unmanageable.

What is needed to adapt to change and yet maintain a high level of quality?

For any team, the most typical problem that arises when introducing changes in a system is fear: fear of breaking 
something that was already working before and not realizing it until after it has reached the customer's hands. 
When a user is given a new version of the application, there is nothing worse than finding that what always used 
to work no longer does.

Some of the key benefits of 
continuous testing include:

Lower the cost of development
Reduce waste
Reduce risk upon release
Increase system reliability
Release to production faster
Compete more fiercely in the 
marketplace

hello@abstracta.us © Abstracta.

PEOPLE

PROCESSESTECHNOLOGY

P2.1



This is one of the most precious assets of any develo-
pment team because in it lies all of the work. In fact, it 
is the only artifact that every project will always need 
to build. Many teams don’t document it, nor make 
certain types of tests for it, but without code, there 
is no software. So, code is the one thing that softwa-
re development teams will always have. This provides 
the guideline that it’s a fundamental area to pay 
attention to in order to control quality and reduce 
risks and costs, no matter what the organization’s 
goals and context may be.

When considering source code, we are referring to 
several things, but we’re mainly referring to code 
management and code quality. Both aspects should be 
considered in order to achieve a good continuous 
testing approach.

Code Management

With code being such an important asset, a risk that’s 
essential to have under control is making sure to 
properly manage it and any amendments made 
thereto. There are specific tools to do this that are 
made for working with a centralized repository where 
all team members can reliably store it.

Today’s tools have evolved in terms of task focus, 
going from simple schemes like CVS to more sophisti-
cated and flexible ones like Git. What they allow, 
some to a lesser or greater extent, is to have the code 
in a centralized location. Each developer can submit 
code, consult it, retrieve previous versions (which is 
useful when your code is not working properly and 
you need to go back to the previous working version), 
add comments to each “commit” made (e.g., 
comments indicating why one decided to send 
certain code to the repository) and much more.

THE SOURCE CODE

THE ULTIMATE GUIDE TO
CONTINUOUS TESTING

To address this problem, teams must be able to 
detect any errors of any kind as soon as possible. 
When speaking of errors, we are referring to any kind 
of error or bug: a miscalculation, performance 
problems, security vulnerability, aspects of usability, 
maintainability problems (e.g., code quality factors) 
or anything that may inconvenience a user. And what 
we mean by “as soon as possible” is as soon after 
when the error was inserted into the system as possi-
ble.

Thus, important practices like continuous testing, 
which goes hand in hand with continuous integra-
tion (CI), emerge and gain importance for Agile 
teams.

Basically, continuous integration proposes building 
and testing the solution frequently, building a poten-
tially customer-shippable product with a frequency 
that depends on each team, varying from one new 
version after each commit to one every day or week. 
Continuous integration tools allow for defining a 
sequence of tasks to be performed automatically, 
among which typically include:

      Updating code to the latest version
      Building the solution
      Automated checks
      Code quality checks
      Security checks

And the list can go on with hundreds of integrations 
and tests that one may wish to add.

There are dozens of tools to support these automa-
ted systems, some as old as Ant, Maven and MSbuild, 
configuration management tools as Chef, Puppet or 
Ansible, to popular CI tools such as Jenkins, Cruise-
Control, Bamboo and TeamCity. And if that were not 
enough, there are also cloud solutions like Amazon 
Pipeline Code, TravisCI, CircleCI, Codeship and Micro-
soft’s Visual Studio Team Services (to name a few).

So, all one has to do to have continuous testing 
and continuous integration is simply implement 
one of these CI tools and then quality will be 
baked into everything. Right?

Wrong.

The problem is that many teams fall into this very 
fallacy and overlook many preconditions for conti-
nuous testing and CI that must be met beforehand, 
resulting in failure. Some of the preconditions include 
the proper handling of code version management, 
incident management, data and environment mana-
gement, automated checks at different testing levels 
(unit, build tests, API, UI), performance tests, internal 
code quality and so on.

Fortunately, this guide will help you navigate 
through several of the hoops your test team 
has to jump through on your path to conti-
nuous testing (the highest level of testing 
maturity according to our maturity model) all 
the while igniting the shift from traditional 
quality assurance to quality engineering.

INTRODUCTION   /   THE SOURCE CODE

hello@abstracta.us © Abstracta.P2.1



THE ULTIMATE GUIDE TO
CONTINUOUS TESTING

These tools are also accompanied by a methodology. 
In particular, this is reflected in how the branches of 
the versions are administered (approved, removed, 
merged, etc.), which allows for different people to 
work on different versions of the code. There are 
those that maintain a branch for each customer (if 
each has different code), or a branch for larger 
versions of code, or at a finer level, where a new 
branch is opened for each functionality or fix someo-
ne makes.

Code Quality

On the other hand, it’s important to pay attention to 
the code quality for promoting maintainability. Code 
quality is typically an internal attribute of quality, as 
it’s not visible to the user. It’s possible that, even 
though the user perceives a software to be of high 
quality (easy to use, fast, without critical bugs, etc.), it 
can actually have troubling code quality problems. 
But since users can’t see nor analyze the code them-
selves, they would never know. Conversely, quality 
factors like performance, reliability, and usability, 
among others, are external, meaning, users do percei-
ve them.

But, there may come a moment when internal quality 
factors transform into external ones. Take, for exam-
ple, what happens when a change is made to the 
system in response to a user request. If the code 
quality is so poor that it takes several weeks to 
modify the system, then there is a huge maintainabili-
ty problem which not only affects the development 
team, but also the user. The longer it takes for the 
change to be made due to the bad code, the worse 
the user satisfaction will be.

Maintainability depends on many aspects. There 
is a tired phrase that goes, “Code is written once and 
read many times,” meaning, it must be easy to read. 
But this doesn’t only include following the well-known 
conventions like when to use capitals and when to 
use lower case, or using the correct indentation, but 
it’s also necessary to keep the code complexity, 
coupling, size of the classes, amount of parameters, 
and many more factors in mind.

THE SOURCE CODE

standards and coding conventions nor implementing 
unit testing) then at that very moment, “debt” accu-
mulates. The system is owed whatever it may be that 
was hastily foregone, for example, unit tests, putting 
them off for when time allows.

What’s the problem with that? Besides repaying the 
debt, “interest” will be added on so to speak, since it’s 
likely to take longer and more energy to fix things 
after some time has passed than doing it right in the 
moment.

Each maintainability problem generates technical 
debt and someone always pays: sometimes just the 
developer, or worse, the user who ends up suffering 
from the poor quality of the system.

Some very common defects in code 
quality are:

      

Modern development environments help immensely 
with some of these problems such as Visual Studio or 
Eclipse (to name a few popular ones), to the point 
that if some of the restrictions are not met, the code 
will not compile. At any rate, there are many things 
that can be analyzed with tools that were specifically 
made for analyzing code quality. Today, the most 
popular tool for this purpose is SonarQube, but there 
are several others such as PMD, Kiuwan and CheckS-
tyle.

These tools perform a static study of code and are 
white-box, that is, they analyze the code without 
executing it. They check for the common defects 
mentioned above, such as duplicate code or cyclo-
matic complexity.

Years ago the term "technical debt" arose for easily 
explaining the problem of code maintainability to 
someone without programming skills. It makes an 
analogy with the more well-known concept of finan-
cial debt. It essentially says that if one schedules a 
certain functionality, and does it hurriedly due to 
lack of time, without complying with the team’s "defi-
nition of done," (for example, skipping documenta-
tion by putting comments in the code, not meeting 

Duplicate code
Lack of unit testing, lack of comments
Spaghetti code, cyclomatic complexity, high 
coupling
Methods that are too long
No adaptation to standards and coding conven-
tions
Known security vulnerabilities

hello@abstracta.us © Abstracta.P2.1

https://martinfowler.com/bliki/TechnicalDebt.html
https://visualstudio.microsoft.com/es/?rr=https%3A%2F%2Fabstracta.us%2Finsights%2Fguide-continuous-testing%2Fsource-code.html
https://www.eclipse.org/
https://www.sonarqube.org/
https://pmd.github.io/
https://www.kiuwan.com/
https://checkstyle.sourceforge.io/
https://checkstyle.sourceforge.io/


THE ULTIMATE GUIDE TO
CONTINUOUS TESTING
THE SOURCE CODE   /   ENVIRONMENTS AND INFRASTRUCTURE

While it’s great that SonarQube can provide information as to where the technical debt is, it is also important to 
know how to pay it. But, just sorting these issues by priority isn’t enough. The key here is finding the code that 
will give the best ROI if improved. It’s necessary to cross the information of the issues and their severity with 
the number of commits that there are in each class. In doing so, efforts can be focused on improving the maintai-
nability of those classes that are modified more often. However, if there are maintainability problems of classes 
that are seldom touched, but they function properly, it’s better not to tackle them. As the saying goes, “If it ain’t 
broke, don’t fix it.”

Something very impressive is that SonarQu-
be and tools alike are able to indicate what 
exactly the technical debt is, calculating how 
many minutes it would take to resolve each 
issue it detects. For example, the following 
image is shown publicly on the SonarQube 
site as the result for MySQL. One can see 
that the software has a debt of 36,000 days, 
which means 36,000 days are needed to 
resolve all the detected incidents.

This much debt is not what anyone wants 
for their software!

To achieve continuous testing, a CI environment must be built, and to do so, it’s clear that code 
needs to be accessible in a well-organized repository, with various quality checks on the code being 
made, utilizing something like SonarQube.

Presumably, something everyone can agree on is that 
there are at least three different environments to 
work within: one for development, where the code is 
compiled and tested locally upon each modification, 
one for testers to test the "closed" versions that are 
ready to test, and the production environment, 
where the system code that users face is found.

It never occurs to anyone to go from the development 
environment straight to the production environment, 
right? Because that would be plain crazy…

Unfortunately, some teams do just that, run tests in 
the wrong environment. There are many that don’t 
have even the three basic environments to carry out 
these practices, which causes many consequences. 
For example, this is when one might hear the excuse 
from developers, "Well, it works on my computer," 
when something isn’t working for the user (when it 
matters most).

To really test software before it reaches the user, it is 
essential to have a specific environment for it, and, 
sometimes even that is not enough. Especially for 
automated checks, it is essential to run these tests 
with the data for them in isolation. 
Furthermore, it’s advisable to have a separate 
environment to ensure that they will not be modified 
(if they are modified, there is a risk of obtaining false 
positives).

"Everybody has a testing environment. Some 
people are lucky enough to have a totally 
separate environment to run production in."

Michael Stahnke

ENVIRONMENTS AND INFRASTRUCTURE

hello@abstracta.us © Abstracta.P2.1

https://twitter.com/stahnma/status/634849376343429120


THE ULTIMATE GUIDE TO
CONTINUOUS TESTING
ENVIRONMENTS AND INFRASTRUCTURE

It’s fundamental to manage the test environment 
well, considering many of its different elements:

     

If there are different tests to be performed with diffe-
rent configurations, parameterizations, etc., more 
than one test environment will be needed, or an 
environment and many database backups, one for 
each set of tests. This means that one has to perform 
specific maintenance for each backup (for instance, 
whenever there are changes in the system in which 
the database is modified, one must hit each backup 
with these changes).

But if one of these elements is not in tune with the 
rest, the tests will probably fail and lead to inefficien-
cy. It’s crucial to be sure that each time a test reports 
an error, it is because there really is a bug instead of 
it producing a false alarm.

To solve all these problems at the environment level, 
there are typically special roles within a team. An 
immensely popular industry trend now is to have 
DevOps. There is a slight controversy over the term 
because the original concept was related to the cultu-
re of a team, and not designated to individual roles. 
But, today you will see companies hiring a “DevOps 
Engineer.” According to Puppet Labs, teams that 
employ DevOps deliver 30 times more frequently, 
have 60 times fewer failures and recover 160 times 
faster.

Basically, the role of DevOps is to combine the vision

of operations management (infrastructure and 
environment), development, and business. Connec-
ting these areas makes it possible to quickly and 
efficiently resolve all the needs of the team while 
placing the focus on the customer and the end user.

As for tools, DevOps usually takes advantage of the 
facilities of virtual machines as well as other more 
advanced ones like Docker and Kubernetes. When it 
comes to the variety of mobile devices needed for 
testing, there are several solutions for avoiding 
buying and maintaining dozens of devices every 
month, from device laboratories to shared solutions 
in the Cloud that offer access to devices on a pay as 
you go basis.

Thus, having multiple, properly managed environ-
ments helps avoid questions like, "Are we sure we're 
testing on the latest version?” It is also fundamental 
to have all the environments that testers need, which 
may include providing access to different operating 
systems with different configurations, different brow-
ser versions, or even having access to various mobile 
devices. Due to the vast array of devices on the 
market and the fragmentation within Android and 
nowadays even with iOS, it’s necessary to test on as 
many of the most relevant devices as possible. 

Concerning mobile device coverage, a strategy that 
Abstracta has seen great results with is "cross-covera-
ge over time.” Whereas testing on a variety of devices 
requires more runtime, the cross-coverage strategy 
aims to improve coverage over time. This strategy 
simply proposes organizing executions in such a way 
so that they are not all ran in each execution cycle, 
but rather ran alternately, improving coverage after 
many cycles. The following images exemplify this 
strategy: 

The source files and executables of the application
The test devices and the data they use
In turn, the data are related to the database 
system in each environment, so it’s necessary to 
manage the schema and data from the correspon-
ding database

hello@abstracta.us © Abstracta.

Test 1 %

%

%

S5 Nexus
4

HTC
One

Test 2

Test 3

Execution 1

Test 1 %

%

%

S5 Nexus
4

HTC
One

Test 2

Test 3

Test 1

%

%

%

S5 Nexus
4

HTC
One

Test 2

Test 3

Execution 2 Execution 3

P2.1

https://abstracta.us/blog/devops/much-talk-around-devops-culture/
https://abstracta.us/blog/devops/much-talk-around-devops-culture/
https://www.docker.com/
https://kubernetes.io/
https://abstracta.us/blog/podcast/mobile-app-performance-sofia-palamarchuk/


This does not guarantee 100% coverage in each run, 
but by managing to toggle the test runs, greater cove-
rage is successively achieved.

This same strategy applies to web browsers, parame-
ters, or many more variables with which testers have 
to “play”.

To achieve testing maturity, the necessary 
environments for test execution are required 
to ensure that there aren’t any additional 
problems besides those that one hopes to 
uncover through testing.

Incident management is a basic point of efficiency 
within a development team. From how bugs are 
managed, it’s easy to tell whether or not an organiza-
tion’s testers and developers feel as if they are a part 
of the same team, with the same goals. This assertion 
is not only aimed at developers, urging that they 
collaborate better with testers, but also at testers. 
Testers should avoid complaining (as they sometimes 
do) when a bug they reported doesn’t get fixed and 
must understand that not everything needs to be 
fixed, depending on the team’s global vision. 

One poor incident management practice that we 
always find irksome at Abstracta is that with the 
hundreds of tools available for incident manage-
ment, some teams still choose email as the designa-
ted channel for reporting bugs. Or worse, not using 
anything at all, and the tester simply taps the develo-
per on the shoulder after finding a bug. 

What’s the problem with reporting bugs without 
recording them with an adequate tool? 

Basically, it’s impossible to follow up, keep a record, 
know the status of each incident (if it was already 
solved, verified, etc.), or even, if there’s a team of 
testers, have it clear what things were already repor-
ted by another tester that shouldn’t be reported 
again.

Of course, even when using an incident management 
tool, there will still be a need to speak face to face, but 
they do aid in adding clarification. For example, one 
can comment on and show directly, in the moment, 
what happened and thus communicate more effecti-
vely. 

The following scheme summarizes a possible life 
cycle of a bug (there could be a thousand variations 
of this according to the team’s structure, size, etc).

BUG AND INCIDENT MANAGEMENT

THE ULTIMATE GUIDE TO
CONTINUOUS TESTING

Whereupon, in the third execution cycle 
full coverage is reached:

ENVIRONMENTS AND INFRASTRUCTURE   /   BUG AND INCIDENT MANAGEMENT

hello@abstracta.us © Abstracta.

Test 1

% % %

% % %

% % %

S5 Nexus
4

HTC
One

Test 2

Test 3

P2.1



THE ULTIMATE GUIDE TO
CONTINUOUS TESTING
BUG AND INCIDENT MANAGEMENT   /   TEST MANAGEMENT

flow above, whether it be the tester or the developer 
who marks a bug as “resolved,” “won’t fix,” or through 
a dialogue (via the tool or a different medium), both 
the tester and developer could decide together what 
is the appropriate decision, showing mutual agree-
ment between the two.

At this point you may be wondering, “Why is this 
important for continuous testing?” As stated before, 
this is the main point of interaction between testers 
and developers, whether they are under the same 
roof, or in distant countries. Moreover, there are 
tools like Jira that allow traceability among the issues 
reported in the tool and code, which, in order to 
make the most of these features, everything must be 
well mechanized.

The most mature testing teams have a perfect-
ly oiled incident resolution machine, (using a 
designated incident management tool) as the 
greatest interaction between testers and deve-
lopers is in the back and forth of these mecha-
nisms.

One of the most typical mistakes in incident manage-
ment that our team has seen while working with 
different companies across traditional and Agile 
environments has to do with the moment when a bug 
is deemed “fixed” and the developer marks it as 
closed.

It is important to remember that the tester must 
double check that a bug has been properly fixed 
before closing it!
First, the tester reports it and then the developer 
fixes it, but the person who should ultimately deter-
mine if it has been resolved is the tester that reported 
it in the first place. What if the developer thinks it’s 
gone, but upon further testing, it is still there? What if 
a new bug has been created in its place? A tester 
should always go back and check that the bug no 
longer exists in order to minimize risk.

There are several other valid variations of this 
scheme. For example, there could be someone with 
the responsibility of reviewing the incidents that 
come in and deciding which ones to fix and which 
ones not to fix. This situation could work within the 

Quality to software is not as sugar is to coffee.

One does not simply add “two teaspoons” of quality 
at the end of development and suddenly have a 
sweet, high quality product. If testing is left for the 
end, it means there is only time for the checks that 
merely verify that the software works. Many times, 
Gantt diagrams show "testing" as a task to perform in 
the last two days, but what if someone were to find 
grave errors in that small window of time? Scott 
Barber says something about this, specifically related 
to performance tests, but it could be extrapolated to 
testing in general:

“Performing the tests at the end of a project is like 
asking for a blood test when the patient is already 
dead.”

Testing and coding should be considered two 
tasks of the same activity, and should start toge-
ther. In fact, testing should begin even before 
anything else, so when the time comes to start 
coding, it’s already been decided how to go about 
testing. This is especially useful for preventing errors, 
not just looking for them.

Speaking of test management, it’s closely related to 
project management because testing is highly 
connected to several areas, therefore everything 
must be planned together in a well-coordinated 
manner.

Some typical questions to ask to know if a team is 
managing testing proactively (or if at all) could be:

      

TEST MANAGEMENT

What are the acceptance criteria? When will we 
give the nod to deliver the new product feature to 
the customer?
How well are we testing the software? To answer 
this, are we using some kind of metric for covera-
ge or do we really have no idea?
Who tests what?
How much testing do we still need? How’s it all 
going?
What risks are there and which one is the most 
important to mitigate next?
Is the product we are building of quality? Does it 
meet the customer’s needs?
Are we considering all aspects of product quality 
that really matter to the user and the business 
(performance, reliability, usability, security, etc.)?

hello@abstracta.us © Abstracta.P2.1

https://www.atlassian.com/software/jira
https://abstracta.us/blog/software-testing/software-testing-wheel/


THE ULTIMATE GUIDE TO
CONTINUOUS TESTING
TEST MANAGEMENT   /   FUNCTIONAL TESTING

The list of issues related to risk management and a team’s knowledge of the product quality could go on and on.

In continuous testing, testing activities must be considered from the first day of the project and 
thereafter. Testing shouldn’t be regarded as something done in case there’s spare time, or in isola-
tion. It should be planned and executed deliberately, in order to meet business objectives.

Functional testing is focused on the functional aspect 
of the software (Surprise!).

Mainly, it asks the question, “Is the system buggy?” In 
other words, it focuses on how well the software 
works according to the design specifications and 
having all related risks under control. Functional 
testing checks the core functions, test input, menu 
functions, installation and setup on localized machi-
nes, etc.

As mentioned earlier, especially in functional testing, 
it is important that teams know if they know what it is 
they’re testing. Which aspects have already been 
tested and which are missing? How thoroughly are 
they tested?

From our point of view, there are three major 
ways of doing functional testing:

FUNCTIONAL TESTING

Scripted Testing: In scripted testing, first one 
wonders, “What is it that I want to test?” Then one 
documents it and runs the tests according to the 
document, recording what went right and wrong. 
The star player in this game plan is the "test 
case." The two stages, the design stage and the 
execution stage, are so removed from each other 
that they could be completed by two people with 
differing skills. A business expert who is knowled-
geable in designing test cases could create a 
spreadsheet (or tool) with all the cases that he or 
she is interested in testing. Then another person 
who may not have as much experience could take 
that documentation and execute it step by step,

indicating the results of each test. In doing this, it is 
ideal to plan, leave a record of everything that was 
done, organize the team and analyze how deeply 
everything was tested. This method is suitable for 
regression testing, for passing on the knowledge 
of what things were tested to another person, and 
for documenting the expected behavior of the 
system.

Exploratory Testing: With the advent of Agile 
methodologies and the focus on adaptation to 
change, test cases become less relevant. It’s not 
always ideal to wait around to have documents 
handed over that indicate what to test and what is 
the expected result in order to convey an idea of 
how well or poorly the system works. That’s why 
the exploratory testing approach exists, where the 
focus is on designing and running tests simulta-
neously, and in doing so, becoming familiar with 
and learning more about the system. The focus is 
on finding errors and risks as soon as possible. 
Furthermore, one can more easily adapt to change 
either within the application or the context. Becau-
se exploratory testing eliminates the need for 
keeping test case documents, it gives way for 
increased flexibility. Every action we take is based 
on the result we got, deciding what to do (and 
designing the test) on the fly. But beware, this is 
not ad-hoc because there is a well defined metho-
dology to follow this scheme that allows us to 
organize, track, control, and manage the whole 
process. It aims to improve from cycle to cycle 
rather than run the same tests repeatedly in each 
cycle (as this is tedious, error-prone, and is better 
than just running an automated check).

Ad-hoc: Ad-hoc is equivalent to asking anyone to 
"test the system for a while”. This is typical of those 
who see testing as something like having the 
software in front of someone who makes random 
clicks, observing “how it is.” There’s no element of 
control, it’s impossible to trace, and there’s no way 
to know how well or badly it is going. Testing is for 
obtaining information about quality and this does 
not give us said information, so we’d never recom-
mend this “testing” approach.

hello@abstracta.us © Abstracta.P2.1



face level, but it’s neither the only nor the best option. 
To understand this, take a look at the automation 
pyramid by Mike Cohn.

One of the desired objectives of automation is to 
receive feedback on the status of the software’s 
quality as soon as possible, and reduce costs not 
only associated with testing but also development.

It is well known that automating chaos brings 
faster chaos. For the success of this activity, it’s 
essential to properly select which cases to automate 
at each level and pick the ones that promise a higher 
return on investment.

The typical problem is that what comes to most 
people’s mind when they think of automation is auto-
mating the actions of the user at the graphical inter-

THE ULTIMATE GUIDE TO
CONTINUOUS TESTING

Test cases are often reported in spreadsheets, or 
better, in specific tools meant for this purpose. The 
more Agile alternatives to test cases are test sessions, 
revision checklists and mind-maps to record test 
ideas rather than having a step-by-step list of actions 
to test. In any of the key strategies, it is fundamental 
to have some idea of what the whole is (total test 
cases, total functionality to be tested, user stories to 
be covered, etc.), and how to advance. This is what 
signifies the coverage that is being obtained.

Of course, it is necessary to prioritize this according to 
the levels of importance and risk to the business and 
users of each aspect.

To achieve testing maturity and especially conti-
nuous testing, it must be clear what is being 
tested, how, and how well. We recommend 
either scripted or exploratory testing but never 
ad-hoc testing.

Automated checks consist of a machine that executes 
checks or test cases automatically, by reading its 
specification in some way which could be scripts in a 
general-purpose programming language or one that’s 
tool-specific, from spreadsheets, models, etc. The 
goal of automating is to increase testers’ “bandwidth”; 
by automating certain repetitive processes, testers 
can devote themselves to other activities.

Here are just some of the benefits of automation:

Run more tests in less time, speeding up time to 
market and increasing coverage
Image enhancement, increased user confidence
Capability of multi-platform execution
Evaluation of application performance in diffe-
rent versions and over time
Systematic execution, always test the same thing 
and in the same way, without losing any verifica-
tion step
Earlier detection of errors leads to lower correc-
tion costs
Enhance tester motivation, by freeing up time for 
more challenging pursuits
Facilitation of continuous integration

FUNCTIONAL TESTING   /   AUTOMATED CHECKS

AUTOMATED CHECKS

Cohn’s pyramid establishes that there are various 
levels of checks, indicating to which degree they 
should be automated. The ideal situation would 
be to have:

Many automated unit tests/checks during develop-
ment since it’s a primary point for detecting failures. If 
a feature fails at this point, tests/checks could fail at 
the subsequent levels: integration, API, etc.
Some tests/checks at the API level and integration of 
components and services, which are the most stable 
candidates for automation
Less automated GUI tests/checks as they are harder 
to maintain, slower than others in execution, and 
dependent on many other components

hello@abstracta.us © Abstracta.

More Time
& Effort

Manual & 
Exploratory 

Testing

Ideal Test
Automation Pyramid

Unit Tests

Acceptance/integration/ 
Component Tests

Automated
GUI Tests

Higher ROI

P2.1



Performance tests are for simulating the load on the 
system under test to analyze its performance 
(response times and insights usage) to find bottle-
necks and opportunities for improvement.

There are specific tools for simulation which automa-
te actions that generate this load, for example, 
interactions between the user and the server. In 
order to simulate many users with little testing infras-
tructure, interactions are automated at the protocol 
level, which makes automation more complex (as for 
the necessary prep work) than automated scripts at 
the graphical interface level.

Two approaches to performance tests can be distin-
guished: testing early in development (testing the 
performance of units, components or services) and 
testing before going into production (in acceptance 
testing mode). The most important takeaway here is 
that both approaches are essential. It is necessary 
to simulate the expected load before going live, but 
not everything should be left until the last minute, 
since, if there are problems, they will surely be more

complex to solve. Moreover, testing each component 
frequently reduces the cost of corrections, but 
there’s no guarantee that everything will work 
properly when integrated and installed on a server 
and under the expected load.

Here DevOps are needed, as they are the ones that 
are able to analyze the different components of the 
application, operating system, databases, etc., and 
can handle different monitoring tools to analyze 
where there might be a bottleneck, being able to 
adjust any settings as necessary. It is also imperative 
to involve developers with these tasks since automa-
tion, a programming task, is needed and often the 
improvements that must be made are at the SQLs 
level, data schema, or at a logic level, algorithms, 
code, etc.

To execute automated performance tests frequently, 
an important problem is figuring out how to make 
sure the test scripts are maintainable. This happens 
because automation is done at the protocol level, 
and in the case of web systems, for example, it’s at 

PERFORMANCE TESTING

THE ULTIMATE GUIDE TO
CONTINUOUS TESTING

Performing GUI tests/checks lends to a greater 
degree of tranquility since they check the functionali-
ty end-to-end, but it’s not advisable to aim for just 
having this one kind of automated checks, nor for it 
to be the majority of the test-set.

For reference, Google claims to have 70% of its auto-
mated checks at the unit level, 20% at the API level 
and only 10% at the GUI level.

The objective of this scheme is for there to come a 
time when greater test coverage is increasingly achie-
ved, while investing the same amount of resources.

There is a very interesting problem that occurs at this 
level. The design and programming of unit test cases 
has always been a thorn in the software developer’s 
side. Unit testing is a fundamental step for adding a 
piece of code to the system, but there isn’t always 
enough time, resources, nor the will to do it. While 
this level of testing is recognized as a good practice to 
improve code quality (and avoid technical debt), it is 
also true that often when designing, preparing and 
planning for completing a programming task, things 
that are not considered absolutely fundamental are 
left out, and so, unit tests may fall by the wayside. At 
Abstracta, we strongly recommend not leaving them 
out.

Maybe this is the deeper problem: unit testing is not 
considered to be part of development and ends up 
being regarded as an optional, support activity.

Clearly, unit automated checks are extremely 
helpful for a continuous integration scheme in 
which errors are identified as soon as possible.

Furthermore, it is essential to define a good strategy 
for automated checks following Mike Cohn’s pyra-
mid: a strong base in unit testing, some tests at the 
service level and only the most critical at the graphi-
cal interface level. It’s important to always consider 
the maintainability of the tests in order to sustain a 
good cost-benefit ratio.

Automated checks are the most important 
tests at the functional level. Truth be told, it is 
not possible to achieve continuous integration 
without them, so teams must seek to execute 
them frequently.

AUTOMATED CHECKS   /   PERFORMANCE TESTING

hello@abstracta.us © Abstracta.P2.1



SECURITY TESTING

Security issues are usually the most infamous of all, 
since they commonly involve economic losses, credit 
card theft, the release of private data, etc., bringing 
about negative press and devastating business 
consequences.

One recent real world example that no one can forget 
is the massive Equifax data breach in July 2017 in 
which 99% of its customers’ (146 million people) 
social security numbers were exposed. The company 
revealed that it had known about the security hole 
since March of the same year, yet failed to protect its 
customers’ highly sensitive personal information. As 
a consequence, by September 2017, the company 
lost $4 billion.

And, breaches don’t only occur within giant corpora-
tions like Equifax or the financial sector, but also in 
healthcare, retail, education, and government, 
among others. The number of U.S. data breach 
incidents tracked in 2017 hit a new record high of 
1,579 breaches, according to the 2017 Data Breach 
Year-End Review released by the Identity Theft 
Resource Center® (ITRC) and CyberScout®.

Hence, why it is so important to keep security testing 
in mind!

The OWASP group provides many good guides as well 
as tools that allow checks to verify the typical security 
problems, such as cross site scripting, injection, 
known vulnerabilities, etc.

Each organization’s security risk will be different. It is 
important to determine the potential impact of a 
security breach on your organization in order to 
assess how much time and resources should be 
devoted to this area of quality. The more critical the 
security of your application, the more mature your 
testing will be if you take the proper measures to 
prepare for a breach.

Having at least some basic security checks 
running periodically allows teams to consider 
this aspect of quality and over time, improve 
their set of controls.

THE ULTIMATE GUIDE TO
CONTINUOUS TESTING

the HTTP level, making the scripts highly susceptible 
to changes in the application. A couple of the tools 
that have emerged to overcome this problem that we 
use at Abstracta are Taurus and Gatling. Although 
they have different approaches, both handle simple 
scripting language and seek to reduce their complexi-
ty. For instance, Gatling applies test design patterns 
like Page Object, which can reduce the impact of 
changes, increasing maintainability.

It goes to show that before selecting a tool, it is extre-
mely important to define the objectives of the perfor-
mance tests, in order to choose the one that best 
addresses your needs and challenges. Each tool 
comes with its own advantages and disadvantages 
and features that compensate for different things.

For more on performance testing tools and approaches, 
visit our performance engineering blog.

Consider performance testing for the accep-
tance of a product, simulating the expected 
production load, as well as accompanying the 
whole development process with unit perfor-
mance tests to facilitate CI.

PERFORMANCE TESTING   /   SECURITY TESTING

hello@abstracta.us © Abstracta.P2.1

https://abstracta.us/blog/performance-testing/


If a product is being built according to the specifica-
tions of its customers, but without considering the 
context, how they are going to use it, and other neces-
sities related to usability and UX (user experience), 
the users still might not fall in love with it. (Gasp!)

There are specific experiments (tests) that put the 
focus on finding certain user interaction problems 
with the system, so that in the end, the team can 
make it easier to use and more intuitive. An indicator 
that usability is poor is when a user asks for a manual 
to learn how to use it.

Perhaps the most popular material in this respect is 
everything provided by Jakob Nielsen with his heuris-
tics for analyzing different typical usability characte-
ristics and problems. As a part of ongoing testing, 
teams should consider conducting such tests 
frequently, either by applying these heuristics 
manually and individually, in groups, surveys, or using 
tools to run some tests even in production, or in a 
beta version aimed at a small group of users.

Moreover, don’t forget an associated quality factor 
known as accessibility.

In this case, accessibility refers to how easily someo-
ne with a physical disability can interact with a softwa-
re product. It is highly beneficial to design it in a way 
that it is compatible with other tools that the physica-
lly impaired use such as Voice Over, Switch Access or 
Switch Control, etc.

Not only does accessibility impact the physically 
impaired, but everyone. Whether someone is trying 
to use an application in low lighting or with just one 
hand, they will benefit greatly if the app is designed 
with accessibility in mind.

Plain and simple, accessible design is good design.

There are many tools that facilitate this type accessi-
bility analysis, from the W3C to some simpler and 
newer ones like Pa11y. Read more about how to set 
up tests with Pa11y in CI here.

To ensure user loyalty and satisfaction, it’s 
important to consider how easy and enjoyable 
it is for users to interact with your software. 
Mature testing organizations that use CI will 
have tests in place to account for this aspect of 
their software.

USABILITY TESTING

THE ULTIMATE GUIDE TO
CONTINUOUS TESTING

After reading about the different areas of quality and 
how to manage them in a continuous integration 
environment, you may be wondering how to assess 
how well your team is currently doing and what steps 
to take to reach the highest level of testing maturity.

We have defined a total of three testing maturity 
levels (to keep the model as simple as possible, more 
than anything). Once you know what level your orga-
nization is at, it will be all the easier to create a plan to 
continuously improve your testing.

The three levels are determined by three aspects: 
risk, quality, and costs.

TESTING MATURITY LEVELS
Level 1: Basic Testing

     Risks are known
     Quality is measured
     Costs are measured

Level 2: Efficient Testing

     Risks are controlled
     Quality is controlled
     Costs are controlled

Level 3: Continuous Testing

     Risks are reduced
     Quality is optimized
     Costs are optimized

USABILITY TESTING   /   TESTING MATURITY LEVELS

hello@abstracta.us © Abstracta.P2.1

https://www.nngroup.com/articles/how-to-conduct-a-heuristic-evaluation/
https://www.w3.org/WAI/standards-guidelines/mobile/
https://pa11y.org/
https://abstracta.us/blog/agile-testing/accessibility-testing-in-continuous-integration/


THE ULTIMATE GUIDE TO
CONTINUOUS TESTING
TESTING MATURITY LEVELS

hello@abstracta.us © Abstracta.

FUNCTIONAL
TESTS

AUTOMATED
TESTS

PERFORMANCE
TESTS

SECURITY
TESTS

USABILITY
TESTS

SOURCE
CODE

INCIDENTS/
BUGS

TEST
MANAGEMENT

ENVIRONMENT/
INFRASTRUCTURE

Source code versioning

- UI automation
- Unit testing with minimal coverage

- Unit testing
- Automated API tests

Usability testing

BASIC TESTING EFFICIENT TESTING CONTINUOUS TESTING
Aware of risks, quality 

and costs are measured
Risks, quality, and 

costs are controlled
Risks are reduced, quality 
and costs are optimized

MANDATORY RECOMMENDED OPTIONAL

- Basic test management
- Test planning with development

Basic tests of access 
control policies

- Separate dev/testing
environments

- Few devices/browsers are
covered

- Functionality inventory (backlog)
- Traceability between test cases and

features
- Test cases, checklists, exploratory
testing

Bug tracking

Unit, API, and UI automated 
tests running continuously

CONTINUOUS INTEGRATION /
CONTINUOUS DELIVERY

OWASP Top 10 pen testing

- Test design techniques
- Tests are prioritized

- Testing before development
- Impact analysis

Defect causal analysis

User testing

- Test data management
- Full device/browser coverage
- Virtual servers

- Test environment management
- Containers
- Service virtualization

Traceability between features, 
issues, and code

Performance tests 
running continuously

Accessibility testing

- Long-term code coverage
strategy

- Agile management
- Testing and devs in one

uni ed team

- Client-side performance tests
- System performance testing
before go-live

- Reactive production monitoring

Code quality control

- Unit performance tests
(during dev)

- Proactive monitoring in
production

Automated security checks

P2.1



Once you complete the necessary steps to shift left testing and go from “quality assuring” to quality enginee-
ring, your organization will reap the highly sought after benefits of being able to efficiently deliver smaller, 
more frequent releases, keeping up with customer demands, competitors, and market conditions.

The best part is that as more clients and users become satisfied with your software because it consistently 
delivers on every aspect of quality that matters the most to them, so too will your business feel satisfied, with 
its increased profits and production capacity.

Additional Resources

Browse our blog for even more in-depth information related to each section of this guide
Watch the webinar recording: Learn How Shutterfly Employs Continuous Performance Tests for Winning 
Customer Experiences Build After Build
Download our ebook: A Complete Introduction to Functional Test Automation
Read the white paper: 10 Mistakes Companies Make When Outsourcing Software Testing
Follow Abstracta on Twitter, Linkedin, and Facebook

CONCLUSION

THE ULTIMATE GUIDE TO
CONTINUOUS TESTING

Have questions or are looking for some assistance in your continuous testing efforts?

Contact us here or at hello@abstracta.us

TESTING MATURITY LEVELS   /   CONCLUSION

The model distinguishes three levels for each group 
of tasks, some being mandatory, recommended or 
optional. The lines demonstrate the relationship of 
dependency between them.

Thus, you can see that to have continuous integration, 
it is necessary to have code quality control, which 
raises the need to manage versions. Moreover, you 
should also have a set of automated checks at the 
unit, API, and GUI levels. But first, In order to have 
those tests, it is necessary to have separate test 
environments and to manage them properly.

That is what we, at Abstracta, consider minimal 
in order to have a good continuous integration 
strategy, and to reach the highest level of 
testing maturity.

P2.1

https://abstracta.us/blog/
https://www.youtube.com/watch?v=5wO9FlhodcM
https://abstracta.us/functional-test-automation-ebook
https://abstracta.us/10-mistakes-companies-make-when-outsourcing-software-testing
https://twitter.com/AbstractaUS
https://www.linkedin.com/company/abstracta/
https://www.facebook.com/AbstractaSoftwareTesting/
https://abstracta.us/contact-us.html
mailto:hello@abstracta.us
https://abstracta.us/



